

Our Industry's Future with Increased Regulatory Involvement

C.S. Snyder

Nitrogen Program Director, Conway, AR

Fluid Fertilizer Forum February 20-21, 2012

Scottsdale, AZ

U.S. Fertilizer N and P₂O₅ Consumption

Yield Trends of Major U.S. Cereal Grains

Nitrogen and Phosphorus Plant Recovery Efficiency

- Nitrogen use efficiency ... "rarely exceeds 70% often ranges from 30-60%"
- "conversion of N inputs to products for arable crops can be 60-70% or even more" (Kitchen and Goulding, 2001)
- Phosphorus use efficiency often below 20-25% in year of fertilizer application
- But "efficiency of fertilizer P use is often high (up to 90 percent) when evaluated over an adequate time scale using the balance method." (Syers, Johnston, and Curtin, 2008)

U.S. Corn - Estimated PFP_N

Partial Factor Productivity, US Corn bu of corn per lb of N fertilizer applied

Courtesy, T. Bruulsema, IPNI 2011. Based on USDA NASS and ERS data

Fertilizer N & P Use Efficiency - Affected by:

- N & P supply from:
 - Soil
 - Fertilizer
 - Other inputs
- Balanced supply of other essential nutrients
- Plant uptake
- N losses
 - volatilization, leaching, runoff, denitrification (and nitrification)
- P losses
 - runoff and some leaching
- All are affected by cropping system management and environmental conditions

Agricultural Nutrient Loss Concerns Air quality (N)

- Ammonia emissions (and NOx)
 - PM_{2.5}
 - smog, human health impacts
 - atmospheric deposition & acid rain
 - biodiversity loss of natural systems
 - eutrophication in sensitive aquatic systems
- Nitrous oxide (increased from 270 to 319 ppb)
 - climate change/global warming
 - stratospheric ozone depletion (UV risks)

Water quality (N and P)

- groundwater nitrate-N contamination
- surface water N and P contamination
 - eutrophication: lakes, streams/rivers, estuaries, and coastal waters

IOWA STATE UNIVERSITY

"One of the clearest trends in the United States observational record is an increasing frequency and intensity of heavy precipitation events... Over the last century there was a 50% increase in the frequency of days with precipitation over 101.6 mm (four inches) in the upper midwestern U.S.; this trend is statistically significant "Increases in Amounts of Very Heavy

Karl, T. R., J. M. Melillo, and T. C. Peterson, (eds.), 2009: Global Climate Change Impacts in the United States. Cambridge University Press, 2009, 196pp.

Cedar Rapids Data

Cedar Rapids Data

http://images.google.com/images?client=safari&ris=en-us&q=cedar+rapids+flood +photos&oe=UTF-8&um=1&ie=UTF-8&el=oYQaS7SwEcG0tge6mI3XAw&sa=X&oi=image_result_group&ct=title& resnum=1&ved=0CBMQsAQwAA

Is <u>severe</u> the new normal?

Arkansas Times, July 20, 2011

Adapted from: USGS, Dr. John Czarnecki

The N Cascade

Galloway et al., 2007 Human Alteration of the Nitrogen Cycle: Threats, Benefits and Opportunities. April 2007 – No. 4. UNESCO-SCOPE

"The central challenge is how to optimize the use of nitrogen to sustain human life while minimizing the negative impacts on the environment and human health."

Alteration of Natural Systems

Source: Russ Gibson, NPS Program Manager, Ohio EPA

Sources of Reactive N (Nr) Introduced into U.S. in 2002 (Tg N/yr)

EPA SAB report: suggests crop N-uptake efficiencies be **increased by up to 25%** over current practices through a combination of knowledge-based practices and advances in fertilizer technology (such as controlled release and inhibition of nitrification).

ISSUES IN ECOLOGY

Published by the Ecological Society of America

Excess Nitrogen in the U.S. Environment: Trends, Risks, and Solutions

Eric A. Davidson, Mark B. David, James N. Galloway, Christine L. Goodale, Richard Haeuber, John A. Harrison, Robert W. Howarth, Dan B. Jaynes, R. Richard Lowrance, B. Thomas Nolan, Jennifer L. Peel, Robert W. Pinder, Ellen Porter, Clifford S. Snyder, Alan R. Townsend, and Mary H. Ward

Report Number 15

 N loss from farm and livestock operations can be reduced 30-50% using current practices and technologies, and up to 70-90% with innovative applications of existing methods. Current U.S. agricultural policies and support systems, as well as declining investments in agricultural extension, impede the adoption of

these practices.

Winter 2012

PM_{2.5} and Ammonia Emission Implications?

Forecast Current AQI **AQI** Animation Current Ozone Current PM₂ s Hourly PM_{2.5} AQI Thursday, February 02, 2012 11:00 AM EST lawai rted: 2012-02-02 16:39:092 Action Day

- PM is the term for a mixture of solid particles and liquid droplets found in the air.
- Includes "inhalable coarse particles", " & "fine particles" (< 2.5 micrometers)
- Precursors: NOx, SOx, VOC, or ammonia

http://www.airnow.gov/ , and www.epa.gov/.../policies_for_pm25_precursors-rich_damberg.ppt

Role of Ammonia in Formation of PM_{2.5}

Europe, 2008 NATO paper*:

 EUROS model: ammonia can be provider of condensation nuclei to form ammonium nitrate and ammonium sulfate meteorological conditions, leading to rapid increase in PM_{2.5}

Mikkelson, Better Crops 2009, reported:

 "While livestock operations are the largest contributor to NH₃ emissions in North America, losses from N fertilizer also contribute significantly to total emissions."

• NRCS, 2007 White Paper:

 "Though ammonia is not designated as a pre-cursor pollutant under the CAA, several air districts in California have chosen to include ammonia controls as part of their State Implementation Plans (SIPs) in PM non-attainment zones."

* Mensink and Deutsch. 2008. Air Pollution Modeling and Its Application XIX . NATO Science for Peace and Security Series C: Environmental Security. 5:548-556, DOI: 10.1007/978-1-4020-8453-9_60.

EPA Requires Greater Accounting of Fertilizer N Related GHG Emissions

- Beginning in 2010,
 - all U.S. ammonia production facilities are required to monitor, calculate and report their GHG emissions to EPA through its Greenhouse Gas Reporting Program.

EPA will obtain data in late 2011 for 2010 emissions

 from facilities based on use of higher tier methods and in particular assess how this data could be used to improve the overall method for calculating emissions from U.S. ammonia production.

Draft EPA 2011 Inventory of U.S. GHG Emissions, 1990-2010

Midwest Ammonia Monitoring Network

Figure 15. Mean concentrations of ammonia, ammonium, nitrate, and nitric acid at sites in the Midwest Ammonia Monitoring Project Network, Nov. 2003-June 2006.

Source: 2008 report prepared for Lake Michigan Air Directors Consortium http://www.ladco.org/reports/rpo/data_analysis/analysis_of_midwest_ammonia_data.pdf

Net GHG Emissions and N₂O Associated with Agricultural Soil Management (EPA, 2011)

Relative Nutrient Source Contributions

Chesapeake Bay

"The Chesapeake Bay pollution diet calls for a 25% reduction in N, 24% reduction in P and 20% reduction in sediment by 2025 "(EPA, 2010)

Graph Source: Ephraim King, EPA OST, 2010

Chesapeake Bay Final TMDL- Section 4 Info, Dec. 2010

Source: Phase 5.3 Chesapeake Bay Watershed Model 1985 and 2009 Scenarios

1985 and 2009 modeled total N, P, and sediment loads from agricultural lands across the Chesapeake Bay watershed

- Model estimates of commercial fertilizer loads have been derived by back-calculation.
- "As P-based nutrient management plans increase, reliance on N fertilizer is expected to increase because less manure will be legally permitted to be applied to agricultural lands.
 "Therefore chemical fertilizers are and will remain a significant potential source of N and P to the Bay. "

January 6, 2012

model & USDA CEAP results Differences: in land use and total acreage in the

- LimnoTech to evaluate discrepancies between CBP
 - Bay watershed, and conservation practices.
 - CBP model: may overestimate nutrients and sediments from farmland reaching the Bay.

EPA & Expectations for Nutrient Load Reductions in Chesapeake Bay Watershed

- EPA expects states to have "enforceable and" accountable" measures for all agriculture, including row crop farmers, implemented by 2025
- Chesapeake Bay Program model used to derive TMDLs

TFI challenged CBP model, and worked with

Virginia Law – Signed by the Governor Aug. 11, 2011

- HB1830 (E. Scott) Resource management plans; effect of implementation, exclusions
- "Allows farmers who develop and maintain agriculture resource management plans to be deemed as being in full compliance with any load allocation contained in a TMDL and any state water quality requirements for nutrient and sediment."

Gulf of Mexico Hypoxia Area

Year

USGS Estimates of N and P Loss and Delivery to the Gulf of Mexico

DesMoinesRegister.com

Find what you are looking

http://www.desmoinesregister.com/apps/pbcs.dll/article?AID=201010120363

Business Today's headlines Crime & Courts Politics & Government Education Health Nation

Iowa Governor

Chet Culver: Limit use of fertilizer by farmers

BY PERRY BEEMAN • PBEEMAN@DMREG.COM • OCTOBER 12, 2010

- "voluntary compliance, if you will, is not working. The self-regulated approach isn't working;"
- "one option is to look at applications and how much we allow people to apply and when we allow them to apply it."
- "I am in agreement with this newspaper in terms of what we've done in the past isn't working;"
- "We all have to acknowledge the fact that the problem is getting worse not better."

IOWA STATE UNIVERSITY INDEX A B C D E F G H I J K L M N O P Q R S T U V W X Y Z College of Agriculture and Life Sciences College Search Coogle [™] Custom Search Cust	
News Releases	
News News Home News Releases Calendar Ag and Life Sciences ONLINE Unit News Communications Service	 Subscribe via RSS Share Search News Releases Archive Enter Keyword 2010 2009 2008 2007 2006 2005 2004 2003 2002 IDALS and Iowa State To Develop Statewide Nutrient Reduction
Other News College Videos Research Videos STORIES ISU News	October 4, 2010 Iowa has rich soils and a climate well suited for producing crops for food, fuel and fiber. But when it rains, farm fields can be susceptible to nutrient loss. This can impact not only lowa's water quality, but also is a concern downstream in the Gulf of Mexico.
130 116443	Hypoxia is a large area of low oxygen that can't sustain marine life. Nutrients that lead to algae growth are

OH State Ag Agencies Recommend P Regulations – Oct. 17, 2011

Home > Media > State Agencies Recommended Phosphorus Regulations

State Agencies Recommended Phosphorus Regulations

STATE DIRECTORS OF AGRICULTURE, NATURAL RESOURCES, AND OEPA ISSUE CALL FOR FARMERS TO ADOPT NEW AGRICULTURAL TECHNIQUES

Praise farmers for successfully reducing total phosphorus and sedimentation rates

Maumee Bay State Park — (Oct. 17, 2011) Meeting today along the shore of Lake Erie officials from the Ohio departments of Agriculture, Natural Resources, and the Environmental Protection Agency announced ongoing efforts towards reducing agriculturerelated phosphorus from loading into the western basin, and encouraged farmers to immediately adopt updated best management practices for fertilizer application.

The three agencies also agreed, based on recommendations from a diverse working group that includes research scientists, agribusiness leaders, and environmentalists; to encourage farmers to adopt production guidelines known as 4R Nutrient Stewardship that is effective in reducing soluble forms of phosphorus from impacting waterways across the state.

The 4R concept promotes using the right fertilizer source, at the right rate, at the right time, with the right placement.

EPA National Nutrient Strategy

- Nutrient pollution is occurring at a national scale and has not been completely addressed.
- Forty-nine states and four territories have 303(d) listings due to nutrients,
 - about 50% of the states have >100 water quality impairments due to nutrients.
- Over 10,000 impairments are a result of nutrient pollution.

1998 - Ecoregional criteria

http://water.epa.gov/scitech/swguidance/standards/criteria/nutrients/strategy/index.cfm

Florida Numeric Nutrient Criteria

• FL submitted 1st draft NNC to EPA 2002

- 2002-2009: FDEP used Nutrient TAC and allocated ~\$20 million in research and monitoring to develop criteria
- -2010 (Jan): EPA proposes a NNC rule
- 2011 (Jun): EPA's initial response:

 If FDEP establishes protective nutrient criteria, then EPA will retract their rule: EPA not made up mind yet

• 2012 (Mar 6) EPA criteria take effect ??

Costs ??? – TBD by National Academy of Sciences

Adapted from T. Obreza

What action can an ag producer take?

- The 1999 Florida Watershed Restoration Act provides a course of action: The FDACS BMP program.
- Producers who file a notice of intent and then implement appropriate BMPs are presumed to comply with water quality standards.
- In areas with Basin Management Action Plans (BMAPs), the BMP program is pseudo-regulatory. FL has bevy of BMP manuals

Adapted from: T. Obreza

Florida Watershed Restoration Act

• "Implementation, in accordance with applicable rules, of practices that have been verified by the department to be effective at representative sites shall provide a presumption of compliance with state water quality standards and release from the provisions of s. <u>376.307</u>(5) for those pollutants addressed by the practices, and the department (i.e. Florida Department of Agriculture and Consumer Services) is not authorized to institute proceedings against the owner of the source of pollution to recover costs or damages associated with the contamination of surface or ground water caused by those pollutants."

http://www.leg.state.fl.us/Statutes/index.cfm?App_mode=Display_Statute&Search_Strin g=&URL=Ch0403/SEC067.HTM&Title=-%3E2006-%3ECh0403-%3ESection%20067#0403.067

Water Legislation in Florida - FFAA 2/13/2012

- FERTILIZER BILL DIES IN SENATE ENVIRONMENTAL
 PROTECTION
 - a bill to recognize certified lawn care professionals with an exemption from any black out period for application that is in any local government ordinance
 - Committee voted down a compromise solution (4-3 vote), effectively killing the bill for this year.
- NUMERIC NUTRIENT CRITERIA LEGISLATION
 PASSES
 - FL adopted its own numeric nutrient criteria in opposition to that mandated by the EPA (H of R, 118-0 vote). The House companion substituted for Senate bill and passed by a 38-0 vote.
 Governor signed Feb. 16, EPA delaying federal standard implementation

Environmental Groups Actively Pushing Stronger Regulations

Tell President Obama:

Clean Up This Slime!

Take Action Today

Dear Friend,

Feb. 14, 2012

We've been slimed.

Every day, our streams, rivers, canals, and bays are under attack from fertilizer, sewage, and animal manure. Maybe you've seen it yourself -- that telltale ugly green slime. This pollution threatens our health, our way of life, and Florida's unique wildlife that depend on clean water.

The EPA developed pollution limits that could help clean up this slimy mess. **But, we need your help to get them implemented.** The Florida Department of Environmental Protection is moving to dumb down these new pollution limits. The EPA is signaling that they may approve these new "faux" limits. We can't let that happen.

Tell President Obama and the EPA to enforce strong, quantitative limits for pollution in Florida.

Together we can flood President Obama with letters demanding action to clean up this slimy mess. We must ensure that the EPA does its job and protects our water. A strong pollution limit is good news for anyone who swims, boats, fishes, or drinks water. It's time for the EPA to step up and act.

Call on President Obama today to take action and clean up Florida's toxic slime.

Thanks for all you do,

Cris Costello Sierra Club

P.S. Activists from all over the state have been tracking and photographing Florida's toxic slime. <u>Take a</u> look, it isn't pretty.

The brackets below indicate the counties in which the slimed waterbody resides.

The photos were contributed by numerous clean water activists and advocacy organizations from across Florida and compiled into map form by the Sierra Club.

Have a photo to add? Comments? Want to help fight slime crime? Contact us at slimecrimes@gmail.com Public 3 Collaborators 17,519 views

Created on Nov 14, 2011 By Updated Jan 30

Caloosahatchee River, 2011 [Lee, Glades, Hendry, Charlotte]

Sugar Cane Canal [Palm Beach, Hendry]

Orlando, 2011 [Orange]

E 🗧 🖸

MN Turf and Lawn P Law – Since 1999

- Use of P Fertilizer on Lawns and Turf is Restricted
 (Minnesota Statutes <u>18C.60</u>)
- Fertilizers containing P cannot be used on lawns and turf in Minnesota unless one of the following situations exists:
 - A soil test or plant tissue test shows a need for phosphorus.
 - A new lawn is being established by seeding or laying sod.
 - P fertilizer is being applied on a golf course by trained staff.
 - P fertilizer is being applied on farms growing sod for sale.
- When these situations do not exist, state law requires Pfree lawn fertilizer is to be used.

MN Turf and Lawn P Law – 2007 Results

- P-free lawn fertilizer is readily available
- Law has reduced P lawn fertilizer use
 - Use of lawn fertilizers containing P decrease 38% between 2003 and 2006.
 - In 2006, 82% of lawn fertilizer used was Pfree
 - The amount of P in lawn fertilizer used decreased from 292 tons in 2003 to 151 tons in 2006
- Law has not increased consumer cost
- No enforcement of the law has been reported
- Consumers supportive of the law

THE NEWS TRIBUNE

THRIFTY LI

Back to Regular Story Page

A novel strategy to reduce farm runoff will be tested starting in Minnesota

BY JOSEPHINE MARCOTTY

LAST UPDATED: JANUARY 16TH, 2012 05:33 PM (PST)

Minnesota will be the nation's first test site for a novel federal cultural pollution that is strangling some of the country's great the Gulf of Mexico and the Mississippi River.

Gov. Mark Dayton is expected to announce Minnesota's leadir day morning, with Tom Vilsack, the U.S. secretary of agricultur Environmental Protection Agency, at his side.

They are promoting the pilot project as a the start of an ambiti give farmers a green seal of approval if they voluntarily choos ahead of crop yields.

Behind the new strategy is a combination of political and fiscal ingly concerned about clean water for drinking, swimming and farmers - the primary source of unregulated water pollution in burdles. At the same time, funding for long-standing farm con-

NEWS RELEASE

United States Department of Agriculture • Office of Communications • 1400 Independence Avenue, SW Washington, DC 20250-1300 • Voice: (202) 720-4623 • Email: oc.news@usda.gov • Web: http://www.usda.gov

Release No. 0010.12

Contact: Office of Communications (202) 720-4623

Secretary Vilsack Signs Historic Agreement with EPA and State of Minnesota Encouraging Farmers to Protect Rivers, Streams and Lakes

ST. PAUL, Minn., Jan, 17, 2012 – Agriculture Secretary Tom Vilsack today announced that the U.S. Department of Agriculture has signed a Memorandum of Understanding (MOU) with the U.S. Environmental Protection Agency and the state of Minnesota to develop a new state program for farmers designed to increase the voluntary adoption of conservation practices that protect local rivers, streams and other waters by reducing fertilizer run-off and soil erosion. Through this partnership producers, who undertake a substantial level of conservation activities to reduce nutrient run-off and erosion, will receive assurance from the state that their farms will meet Minnesota's water quality standards and goals during the life of the agreement. Vilsack, Minnesota Governor Mark Dayton and Environmental Protection Agency Administrator Lisa Jackson signed the MOU during a ceremony in the Minnesota Capitol.

Minnesota, EPA, USDA Agreement Encouraging Farmers to Protect Rivers, Streams and Lakes (MOU signed Jan. 17, 2012)

- assurances and incentives to participating farmers that their good deeds – their strong commitment to conservation – will be recognized,
- Vilsack said. "Farmers will know the rules of the game while the state, EPA and the public will know that this program will lead to cleaner water."
- USDA and EPA will offer support to Minnesota in developing its certainty process for water quality improvements on private agricultural lands and eligible tribal lands in high priority watersheds.
- "..producers who undertake a substantial level of conservation activities to reduce nutrient run-off and erosion will receive assurance from the state that their farms will meet Minnesota's water quality standards and goals during the life of the agreement (USDA NRCS)."

Legend: This map highlights regional patterns of dependence on intermittent, ephemeral, and headwater streams for surface drinking water by county. Across the nation, 357,403 total miles of streams provide water for surface water intakes supplying public drinking water systems; of this, 207,476 miles, or 58%, are intermittent, ephemeral, or headwater streams. Nationwide, over 117 million people receive drinking water from public drinking water systems that rely at least in part on intermittent, ephemeral, or headwater streams. This analysis compared the stream length of intermittent, ephemeral, and headwater streams to total stream length within all mapped Source Protection Areas (SPAs) for each county. A SPA is an area upstream from a drinking water source or intake that contributes surface water flow to the drinking water intake during a 24-hour period. This is based on data that generally do not include streams less than one mile in length. Intermittent streams are streams containing water for only part of the year. Ephemeral streams flow only in response to precipitation events. First-order streams have been used to represent headwater streams. Data Sources: National Hydrography Dataset Phys at medium resolution; Federal Safe Drinking Water Information System 4th Quarter 2006 Data.

National Groundwater Nitrate

Model for deep groundwater used as drinking water (50-m simulation depth)

Figure 1-7. Results of model simulations suggest moderate (shown in yellow and orange) to severe (shown in red) nitrate contamination in relatively deep groundwater (greater than 164 feet or 50 meters below land surface) underlying parts of California, the Northwest, the High Plains, and the East. These areas typically are associated with large nitrogen input;

Probability of Nitrate Contamination of Recently Recharged Shallow Ground Waters in the Conterminous U.S.

Nolan et al. Environ. Sci. & Technol. 2002. 36(10):2138-2145 (USGS)

-	*	late			1. Jaka			
F	rom	wate	r wo	es to	wate	rw	ise	
1			CALIEC	DRNIA	WATER	POL	ICY 2	
home	agenda	location	speakers	sponsors	scholarship	register	planning	
Conf	erence An	enda						
Colifernia Water Balia: 31, Water Wees to Water Wise					Friday, Ma	Friday, March 9		
Mard	n 8-9, 2012	folicy 21: Wa	iter woes to	water wise	7:30 am	Annual P	OWER Breakf	

Westin Los Angeles Airport, Los Angeles

7:30 am	Annual POWER Breakfast
	Topic: TBA
9:00 am	Breakout Sessions:
	The Klamath Dam Deal: A Model to Follow?
	Greg Addington, Executive Director, Klamath Water Users Association
N	itrates in Groundwater: Is
R	equilating Agriculture the Answer?
R	egulating Agriculture the Answer?
R	egulating Agriculture the Answer? Pamela Creedon, Executive Officer, Central Valley Regional Water Quality Control Boar
R	egulating Agriculture the Answer? Pamela Creedon, Executive Officer, Central Valley Regional Water Quality Control Boar Professor Thomas Harter, Subsurface Hydrologist, UC Davis Cooperative Extension
R	egulating Agriculture the Answer? Pamela Creedon, Executive Officer, Central Valley Regional Water Quality Control Boar Professor Thomas Harter, Subsurface Hydrologist, UC Davis Cooperative Extension Maria Herrera, Community Outreach Coordinator, Community Water Center
R	egulating Agriculture the Answer? Pamela Creedon, Executive Officer, Central Valley Regional Water Quality Control Boar Professor Thomas Harter, Subsurface Hydrologist, UC Davis Cooperative Extension Maria Herrera, Community Outreach Coordinator, Community Water Center Science, Money and Politics: Can They Coexist?
R	egulating Agriculture the Answer? Pamela Creedon, Executive Officer, Central Valley Regional Water Quality Control Boar Professor Thomas Harter, Subsurface Hydrologist, UC Davis Cooperative Extension Maria Herrera, Community Outreach Coordinator, Community Water Center Science, Money and Politics: Can They Coexist? Byron Buck, Executive Director, State and Federal Contractors Water Agency
R	egulating Agriculture the Answer? Pamela Creedon, Executive Officer, Central Valley Regional Water Quality Control Boar Professor Thomas Harter, Subsurface Hydrologist, UC Davis Cooperative Extension Maria Herrera, Community Outreach Coordinator, Community Water Center Science, Money and Politics: Can They Coexist? Byron Buck, Executive Director, State and Federal Contractors Water Agency Tam Dudoc, Board Member, State Water Resources Control Board
R	egulating Agriculture the Answer? Pamela Creedon, Executive Officer, Central Valley Regional Water Quality Control Boars Professor Thomas Harter, Subsurface Hydrologist, UC Davis Cooperative Extension Maria Herrera, Community Outreach Coordinator, Community Water Center Science, Money and Politics: Can They Coexist? Byron Buck, Executive Director, State and Federal Contractors Water Agency Tam Dudoc, Board Member, State Water Resources Control Board Maureen McCarthy, Executive Director, Tahoe Science Consortium
R	egulating Agriculture the Answer? Pamela Creedon, Executive Officer, Central Valley Regional Water Quality Control Boars Professor Thomas Harter, Subsurface Hydrologist, UC Davis Cooperative Extension Maria Herrera, Community Outreach Coordinator, Community Water Center Science, Money and Politics: Can They Coexist? Byron Buck, Executive Director, State and Federal Contractors Water Agency Tam Dudoc, Board Member, State Water Resources Control Board Maureen McCarthy, Executive Director, Tahoe Science Consortium Water Rights in a Climate Changed California: Adaptable or Abomination?
R	egulating Agriculture the Answer? Pamela Creedon, Executive Officer, Central Valley Regional Water Quality Control Boars Professor Thomas Harter, Subsurface Hydrologist, UC Davis Cooperative Extension Maria Herrera, Community Outreach Coordinator, Community Water Center Science, Money and Politics: Can They Coexist? Byron Buck, Executive Director, State and Federal Contractors Water Agency Tam Dudoc, Board Member, State Water Resources Control Board Maureen McCarthy, Executive Director, Tahoe Science Consortium Water Rights in a Climate Changed California: Adaptable or Abomination? Tony Rossmann, Partner, Rossmann and Moore

State Commissioned - Preliminary Report on Nitrate Issues in California by UC-Davis

- **Charge:** help improve understanding of the causes of groundwater contamination due to nitrate, identify potential source reduction measures, remediation and treatment solutions, and funding sources to recover costs expended by the state to clean up or treat groundwater, and ensure the provision of safe drinking water to all communities.
- Recommended practices can increase crop N recovery to ~60-80% of N inputs.
- Most promising revenue source: fee on nitrogen fertilizer use
- Significantly raise the cost of commercial fertilizer and for organic fertilizer sources (manure, green waste, wastewater effluent, biosolids, etc.).
- In areas declared at risk for nitrate contamination:
 - cap and trade system for nitrogen management
 - farm-level nutrient management plans, standards, and penalties
 - nitrogen fertilizer fees

Source: R. Mikkelsen

UC-Davis Report on Regulatory Options

What can be regulated?							
Regulated Entity	Abatement Costs (costs incurred to reduce NO3 loading to achieve a standard)	Monitoring / Enforcement Costs	Information Requirements	Revenue Raising			
Fertilizer Application	Higher – regulate input	Low	Low	Maybe			
Nitrate Leachate	Lower – regulate pollutant	High	High	Maybe			

UC-Davis Report – Funding Options

UC-Davis Report

Funding Options: Major Findings

- Many options exist to fund clean drinking water, but all require someone to bear the cost.
- Some funding sources give polluters a price signal.
 - Fees and auctioned permits induce emitters to reduce use of fertilizer or nitrate.
- Farmers do not pay a sales tax on fertilizer in California.
 - Expanding sales tax to fertilizer could generate \$29 million per year in the study area and might reduce applied nitrogen by 5-10%.

UC-Davis Report

Regulatory Options: Major Findings

- 1. Many options exist to regulate nitrate in groundwater, but there is no ideal solution.
- 2. Fertilizer regulations have lower administrative costs and information requirements, but may be less direct in achieving nitrate abatement targets.
- 3. Market-based regulations reduce overall abatement costs, but require cap and trade institutions.
- 4. Well-defined and enforceable regulations are needed for liability rules to work.
- 5. Regulations cannot solve the drinking water quality problem in the short run.

Nitrogen Fertilizer Input vs. N Removal

Source: R. Ferguson, U. of Nebraska

Many Factors Are Contributing to Changes in Nutrient Management and Educational Needs

Major changes in fertilizer costs or crop prices

Climate change induced shifts in cropping patterns, yields, soil processes

Genetic changes that alter crop yields and NUE

Changes in crop species due to bioenergy

Changes in plant parts harvested due to bioenergy

Manure composition changes due to distillers grains

Application of bioash

Government policy

Fertilizer and equipment technology & tools

Know your fertilizer rights

A five-part series created by the International Plant Nutrition Institute

PLANT NUTRITION INSTITUTE

CONTINUING EDUCATION 1500 quizzes Self-Study Course

Earn 1 CEU in Nutrient Management by reading this article and completing the guiz at the end. CCAs may earn 20 CEUs

Reprint from Crops & Soils magazine Volume 42 = Issues 2-5

2009

Know your fertilizer rights

By Tom Bruulsema, International Plant Nutrition Institute, Guelph, ON, Canada; Jerry Lemunyon, USDA-NRCS, Fort Worth, TX; and Bill Herz, The Fertilizer Institute, Washington, DC

The four fertilizer rights: Selecting the right source

By Robert Mikkelsen, International Plant Nutrition Institute, Merced, CA; Greg Schwab, University of Kentucky, Lexington; and Gyles Randall, University of Minnesota, Waseca

Selecting the right fertilizer rate: A component of 4R nutrient stewardship

By S.B. Phillips, International Plant Nutrition Institute, Owens Cross Roads, AL; J.J. Camberato, Purdue University, West Lafayette, IN; and D. Leikam, Fluid Fertilizer Foundation, Manhattan, KS

The four fertilizer rights: timing

By W.M. Stewart, International Plant Nutrition Institute, Norcross, GA; J.E. Sawyer, Iowa State University, Ames, IA; and M.M. Alley, Virginia Tech, Blacksburg, VA

The four fertilizer rights: placement

Scott Murrell (IPNI), Tony Vyn (Purdue), Guy Lafond (AAFC), Dave Finlayson (CFI),

New 4R Nutrient Stewardship Education

- Intensified education: 6 IPNI regional directors in N. America, and other directors globally
- CCA and ag professional training
- Working with state fertilizer associations in key watersheds
- Scientific participants in USDA GHG CIG N_2O mitigation efforts in IA & IL
- Involved in U.S. Research Coord. Network for Reactive N in Environ., mitigation science advisory and protocol committees

Illinois Enhanced Nutrient Stewardship Strategy

Home	Partners	4R's Gallery of Practice	s Research	Press Release	Program	
•6	priorit •Lake Basin inois B	H nutrient stewardship	ABC WHAT ARE THI Home » Partners » 4R	DUT CALENDAR FUNDING E 4RS IMPLEME Supporters » Ilinois Council o	PARTNERS CONTR NT THE 4RS	ct 4R TRAINING ctices
H	• "Lak due to	Go back to previous page	ILLINOI MANAG	S COUNCI EMENT PF	L ON BE RACTICE	ST
•41	produ If eve gene R Nutr i	Illinois Corn Gro the Illinois Soyt the Illinois Farn Illinois Fertilizer Association, the	owers Ass pean Asso n Bureau, [.] & Chemi e Illinois P	ociation, ciation, the cal ork	ssociation, the Chemical Syngenta Crop	CONTACT INFORMATION Website: → www.ifca.com E-Mail: jeanp@ifca.com Phone: (309) 827-2774 Address: 1201 E. Bell Street, PO Box 1326
Pla so	ace) wi cial and	Producers and Protection.	Syngenta	Crop	lion acres in CBMP g leadership gy to reduce	Bloomington, Illinois 61702-1326

http://www.kic2025.org/media/KIC%202025%20Program.pdf

 Fertilizer N BMPs can help minimize the potential for residual NO₃-N accumulation & losses

- N source, rate, timing, and place of application which may include
 - Urease inhibitors
 - Nitrification inhibitors
 - Slow-release materials
 - Controlled-release materials
- In combination with appropriate, site-specific cropping system and conservation practices
 - (e.g. conservation tillage, cover crops, vegetative buffers, managed drainage, wetlands, bioreactors, etc.)

• What could we accomplish if in-field, edge of field, and above stream BMPs are coupled?

Example Fertilizer N BMP Guides

Fertilizer Nitrogen BMPs to Limit Losses that Contribute to Global Warming

By C.S. Service

T16 CONCIPT of fortikoo best management practices diverse is not new, it was first introduced pincer 20 years age-diubert, 2007). Furtilizer DMPs an errore important under than over helive and need to be based on a simple concept of matching the natrient supply with crop requirements, while minimizing nutrient lower from lends. All lettilizer communes should apply the correct outstoot in the armiust needed. transland placed to sent one densed - 'right product, eight rate, right line, and right place." Retrikter BMPs must be adaptable to all furning systems, since one state ices not fit all clickents, 2007).

Property balanced plant numbers with fertilizer BMPs will maximize capture of carbon louide (CO) through crop photownihesis and ratios (C) sequentisation; crop produc ions per unit of land area will be optimized, while also achieving farmer profitability and startalenability goals. Any fertilizer (Bell' that increases over yields, mattern cotales, and encovery of applied numbers in likely to minimize or limit the potential for undestudie subject losses to state and air resources.

ktietos and experience show that the respect of a fertilized BMP on cosp yield, crepquality, profitability, and sufficient form to water or air is greatly refluenced by other agrovanic graction such as plant population, cultive, tillage, and pest miniagement, in sell at conservation practices such as terracing, strip cropping, residue reassagement, riparian ballers, shelter belts, and others, divers, 2007). Practices that are defined mugh to be useful in making on fato fotblare use decisions often are "hest" praction only when used in conjunction with, other appropriate agronomic and commu-tion limbly. A best festilizer practice can be totally ineffective if the cropping system in which it is used has othey territors inadequation divers, 2007).

he distantion and prides that follow are oriented toward the central U.S. Corn Belt, but use relevant to other cropping systems will visitlar crop geographies. They are provided to assist in familiary stronger (K) management decisions that will help leases he impact of furtilizer N use on generalization gas (GHC) emissions and help witigate the global scoresing potential (GWP) - represent as CO₂ expendent. The three CPOs d interest to apriculture are relevan oxide PLO; methane IOLA and CO, The GWF of CHL is 23 times greater and the GWP of N/O is 256 times greater than that of COs. Because detilizer IV use may be associated with 19,0 emissions, and because the CRVP of N/O is so much genter than CO,, britker: N BMPs is reduce N/O emission are exphasized in this practical guide. For example, lettilizer N (048's which help rule). may encouse minute (NO₂) in the soil during eases, wet, or examininged conditions can mult in lowentd rain for N/O anisation, double at al., 1007)

Table 1. Relative effectiveness of management scenarios, shown as advantage of "Scenario 1" over "Scenario 2", in reducing N losses and greenhouse gas emissions. Effectiveness rating represents estimate of the relative potential N loss reduction, on-farm and within-watershed 1

				Indirect effects on N ₂ O emissions			
		Water discharges as NO ₃ NH ₃ volatilizati				greenhouse gas emission ³	
N Source ²	Fertilizer N Managemen	Leaching	Runoff	volatilization	N _i O		
	Right agronomic N	rate					
	Scenario 1	Scenario 2					
All Sources	Accounting for soil N supply and other input sources (e.g. manure, irrigation water, etc.)	No such N accounting (assumes over- application)					
All Sources	Site-specific N management (variable rate and/or source)	No site-specific management					
	Right N timing						
	Scenario 1	Scenario 2					
AA	Applied in the fall after soil temp below S0 °F (10 °C) for spring-planted crops	No waiting					
AA, AS, PA, U, UAN	Spring application, for spring planted crops (e.g. corn)	Fall application					
AA, AS, PA, U, UAN, AN, PN	Spring split or sidedress applied, for spring planted crops	All preplant applied					
AA, AS, PA, U, UAN, AN, PN	Spring or split fall-spring applica- tion, for fall planted crops (e.g. wheat, canola)	All fall applied					
AA AS PA U.	Nitrification inhibitor used	None used					
U	Controlled release technology used	None used					
	Right N placeme	at.					
	Scenario 1	Scenario 2					
AS, PA,U, UAN, AN	Subsurface incorporation	Surface broadcast					
U, UAN	Surface banded	Surface broadcast					
AS, PA, U, UAN, AN, PN	Shallow sidedress band - 1 in (2 cm)	Sidedress band deeper than necessary – ≥ 4 in. (10 cm)					
U, UAN	Surface applied with usease inhibitor, abundant crop residues	No inhibitor					
U, UAN	Surface applied with mease inhibitor, minimal crop residues	No inhibitor					

Relative percentage (%) advantage of "Scenario 1" over "Scenario 2," estimated Legend for ratings in table: from available literature and experienced observation. This rating scheme does not identify the quantity of N loss, which can be relatively small <1 to 2 lb/A (<1 to 2 kg/ha) in some conditions. Relative effects do not include emissions associated with manufacture or transport of inputs. Ratings are subject to change with research progress.

¹N sources: AA=anhydrous ammonia, AS=ammonium sulfate, PA=predominantly ammonium containing, U-urea, UAN-urea ammonium nitrate solutions, AN=ammonium nitrate, PN=predominantly nitrate-containing.

³ Data insufficient to allow ratings for emissions of the other two principal greenhouse gases, CH, and CO₂.

Ratings can represent broad, multiple ranges (e.g. negative to positive), or a single quartile. The rating scheme is based to some extent on a conservation practice rating scheme in Table 17 in EPA SAB (2008).

Adequate P fertilization of corn reduces soil profile nitrate and the potential for nitrate leaching (Schlegel et al. 1996)

Adequate K fertilization increases apparent nitrogen recovery by corn (Johnson et al. 1997)

Summary and Conclusions

- Appropriate fertilizer N and P use and balanced fertilization
 - ➢enhance N and P use efficiency and effectiveness

increases crop biomass, helps restore/maintain/increase soil carbon

Environmental N and P losses can vary among 4R factors ...depending on site-specific conditions, weather, cropping and tillage systems

Industry is working more pro-actively with state and local partners to advance 4R Nutrient Stewardship and site-specific BMP training and implementation, which should help improve crop N and P recovery

We Can Improve N & P Use Efficiency & Effectiveness

by implementing nutrient BMPs

Right source @ Right rate, Right time & Right place

Thank You

Better Crops, Better Environment ... through Science

www.ipni.net

Clean Water Act, 1972 – Recent Confusion

- Provides for protection of our health and environment by reducing the pollution in waterways.
- April 2011, EPA and USACOE released draft guidance to clarify protection and guidelines
- ~ 230,000 public comments were received, many recommended an EPA rule to clarify CWA
- The agencies anticipate proposing a rule for public comment in 2012, with focus:
 - protection of smaller waters that feed larger ones, to keep downstream water safe from upstream pollutants

- reaffirming protection for wetlands

http://water.epa.gov/lawsregs/guidance/wetlands/CWAwaters.cfm

Clean Water Act and EPA Authority?

- Environmentalists and EPA have reached an agreement in principle on two key Clean Water Act lawsuits, and are calling for a stay of further proceedings until May 21, 2012:
- Amid GOP Concern, EPA Seeks More Time For Controversial Water Pact
 - EPA and the Conservation Law Foundation (CLF) agree to settle a controversial set of lawsuits -- a settlement that critics fear could set a precedent expanding the Clean Water Act's (CWA) jurisdiction over groundwater and nonpoint sources of pollution -- though the litigants are asking a federal court to give them more time to complete the deal."

http://environmentalnewsstand.com/

National Scope of Nitrogen and Phosphorus Pollution: EPA database information

- 14,000 Nutrient-related impairment listings in 49 states
 - 2.5 million acres of lakes and reservoirs
 - 80,000 miles of rivers and streams
 - And this is an underestimate . . .
- Over 47% of streams have medium-to-high levels of P and over 53% have medium-to-high levels of N
- 78% of assessed continental U.S. coastal waters exhibit eutrophication, many with harmful algal blooms
- Nutrient impacts reflect doubling of U.S. population over past 50 years
 - · Increased construction, wastewater, and food production

Joe Piotrowski, Senior Advisor, US EPA, Office of Wetlands, Oceans and Watersheds – Watershed Academy Webcast Jan. 26, 2011

6

Greater Monitoring and Public Reporting of State Water Quality Across U.S.

Download Excel compatible information

Download GIS Information (Internet Explorer only) This report displays the most current available reporting year data. Check the <u>Status of Available Data</u> for more information.

Assessed Waters of United States

Incomplete state reported information may lead to discrepancies and/or missing information in these reports.

http://iaspub.epa.gov/waters10/attains_nation_cy.control

Progress Toward Clean Water Act Adopted Numeric Nutrient Criteria

November 2011

http://water.epa.gov/scitech/swguidance/standards/criteria/nutrients/progress.cfm

Numeric Nitrogen Criteria for Rivers and Streams

http://water.epa.gov/scitech/swguidance/standards/criteria/nutrients/progress.cfm

November 2011

Numeric Nitrogen Criteria for Lakes and Reservoirs

November 2011

http://water.epa.gov/scitech/swguidance/standards/criteria/nutrients/progress.cfm

Water Quality Attainment in Assessed U.S. Rivers and Streams

http://iaspub.epa.gov/waters10/attains_nation_cy.control#STREAM/CREEK/RIVER
River & Stream Probable Impairment Source

Probable Source Group	<u>Miles</u> <u>Threatened or</u> <u>Impaired</u>
Agriculture	123,620
Atmospheric Deposition	101,015
Unknown	87,574
Hydromodification	58,915
Urban-Related Runoff/Stormwater	51,517
Natural/Wildlife	51,375
Municipal Discharges/Sewage	50,762
Unspecified Nonpoint Source	46,985
Habitat Alterations (Not Directly Related To Hydromodification)	32,415
Resource Extraction	26,264
Silviculture (Forestry)	19,444
Industrial	14,179
Construction	13,522
Other	10,170
Land Application/Waste Sites/Tanks	8,228
Legacy/Historical Pollutants	4,888
Spills/Dumping	2,420
Recreation And Tourism (Non-Boating)	1,741
Aquaculture	318
Groundwater Loadings/Withdrawals	178
Recreational Boating And Marinas	132
Military Bases	42

River & Stream Cause of Impairment

Cause of Impairment Group	Miles Threatened or Impaired
Pathogens	157,823
Sediment	106,057
Nutrients	101,228
Creans Enrichment/Oxygen Depletion	87,675
Polychlorinated Biphenyls (PCBs)	76,405
Habitat Alterations	75,578
Metals (other than Mercury)	72,335
Mercury	61,989
Flow Alteration(s)	50,479
Temperature	50,159
Cause Unknown	39,546
Cause Unknown - Impaired Biota	37,783
Salinity/Total Dissolved Solids/Chlorides/Sulfates	32,493
pH/Acidity/Caustic Conditions	29,330
Turbidity	28,124
Pesticides	17,097
Other Cause	17,082
Ammonia	12,701
Fish Consumption Advisory	10,029
Algal Growth	7,492
Total Toxics	7,226
Toxic Inorganics	6,834
Toxic Organics	4,886
Dioxins	4,318
<u>Oil and Grease</u>	2,740
Cause Unknown - Fish Kills	1,371
Nuisance Exotic Species	1,236
Taste, Color and Odor	925
Radiation	652
Chlorine	629
	Dag.

